师资队伍
      当前位置: 首页 >> 师资队伍 >> 数据科学与大数据技术系 >> 正文
        数据科学与大数据技术系
        张天纲
      • 系  室:数据科学与大数据技术系
        职  称:教授
        研究方向:人工智能信息处理与分析,机器学习和深度学习算法研究 ,大语言模型构建
        联系方式:zhangtg@hainanu.edu.cn


      个人简介

      博士毕业于日本东京大学(泰晤士世界大学排名第28位)工学系,教授,博士生导师。主持和参与科研项目11项,先后主持并完成黑龙江省自然科学基金面上项目、中国博士后基金面上项目、黑龙江省教育厅科学技术研究项目、哈尔滨市科技青年创新人才项目。目前正主持国家自然科学基金面上项目和地区科学基金项目,具有较充足的研究经费。在国内外重要期刊和会议共发表70余篇学术论文,以第1作者或通讯作者发表SCI收录论文50篇,包括中科院1区top期刊论文4篇,中科院2区top期刊论文20篇,中国计算机学会(CCF)的B类国际期刊论文14篇;论文引用总数为1400余次。在生物信息学领域重要国际期刊上发表了一系列高水平学术论文,涉及的期刊包括《Knowledge-based Systems》(1篇,中科院1区top期刊)、《Applied Soft Computing》(1篇,中科院1区top期刊)、《IEEE Journal of Biomedical and Health Informatics》(4篇,2022年度中科院1区top期刊)、《Briefings in Bioinformatics》(8篇,计算生物学领域1区期刊;CCF B类国际期刊;中科院2区top期刊)、《Bioinformatics》(3篇,CCF B类国际期刊)、《IEEE/ACM Transactions on Computational Biology and Bioinformatics》(3篇,CCF B类国际期刊)、《Journal of Chemical Information and Modeling》(4篇,中科院2区top期刊)、《Computers in Biology and Medicine》(3篇,计算生物学领域1区top期刊;中科院2区top期刊)、Computer Methods and Programs in Biomedicine(1篇,中科院2区top期刊)等,具有一定的学术影响力。此外,作为TCBB、BIB、JCIM等多个国际领域重要期刊的审稿人。

      课题组的主要研究方向包括:人工智能信息处理与分析,机器学习和深度学习算法研究,复杂网络构建与分析,大语言模型构建,物理驱动的深度学习,图像处理和分析

      欢迎硕士研究生、博士研究生及博士后来到我们的课题组,共赴科研之旅。我们在海南大学,期待与你相遇。

      请有意向加入课题组的同学,添加我的微信(ZTG_Taylor)或Email到邮箱(zhangtg@hainanu.edu.cn)。

      国外访学经历

      2019.11-2022.12,东京大学(泰晤士世界大学排名第28位),日本,工学系,访问学者

      科研项目

      主持和参与科研项目11项,其中包括主持和完成黑龙江省自然科学基金项目、黑龙江省高校基础科研青年创新人才项目、哈尔滨市青年科技创新人才项目。目前作为项目负责人主持国家自然科基金项目和校级项目,具有较充足的科研经费。

      发表论文

      在国内外重要的期刊和会议上发表论文70余篇,以第1作者或通讯作者发表SCI收录论文50篇,包括中科院1区top期刊论文4篇,中科院2区top期刊论文20篇,中国计算机学会(CCF)的B类国际期刊论文14篇;论文引用总数为1400余次。详细论文列表,请参看我的google scholar。以下仅列出近几年的代表性论文:

      2025年

      (1) 通讯作者. A multi-scale neighbor topology guided transformer and Kolmogorov-Arnold network enhanced feature learning model for disease-related circRNA prediction. IEEE Journal of Biomedical and Health Informatics, 2025. (中科院2区top期刊,SCI影响因子: 6.8)

      (2) 通讯作者. Multi-knowledge graph and multi-view entity feature learning for predicting drug-related side effects. Journal of Chemical Information and Modeling, 2025. (中科院2区top期刊,SCI影响因子: 5.7)

      (3) 通讯作者. KNDM: a knowledge graph transformer and node category sensitive contrastive learning Model for Drug and Microbe Association Prediction. Journal of Chemical Information and Modeling, 2025. (中科院2区top期刊,SCI影响因子: 5.7)

      (4) 通讯作者. Subgraph topology and dynamic graph topology enhanced graph learning and pairwise feature context relationship integration for predicting disease-related miRNAs. Journal of Chemical Information and Modeling, 2025. (中科院2区top期刊,SCI影响因子: 5.7)

      (5) 通讯作者. Interactive multi-hypergraph inferring and channel-enhanced and attribute-enhanced learning for drug-related side effect prediction. Computers in Biology and Medicine, 2025. (中科院2区期刊,SCI影响因子: 7)

      2024年

      (6) 通讯作者. Gating-Enhanced Hierarchical Structure Learning in Hyperbolic Space and Multi-scale Neighbor Topology Learning in Euclidean Space for Prediction of Microbe-Drug Associations. Journal of Chemical Information and Modeling, 2024 (SCI收录,JCR 1区top期刊,影响因子: 7.9)

      (7)通讯作者. Dynamic category-sensitive hypergraph inferring and homo-heterogeneous neighbor feature learning for drug-related microbe prediction. Bioinformatics, 2024, 40.9: btae562. (中科院2区期刊, 计算生物学领域1区期刊, SCI影响因子: 11.622)

      (8) 通讯作者. Mask-Guided Target Node Feature Learning and Dynamic Detailed Feature Enhancement for lncRNA-Disease Association Prediction. Journal of Chemical Information and Modeling, 64(16), 6662-6675, 2024. (SCI收录,JCR 1区top期刊,影响因子: 7.9)

      (9) 通讯作者. Multi-view attribute learning and context relationship encoding enhanced segmentation of lung tumors from CT images. Computers in Biology and Medicine, 177, 108640, 2024. (中科院2区期刊, 计算生物学领域1区期刊, SCI影响因子: 6.698)

      (10) 通讯作者. Graph reasoning method enhanced by relational transformers and knowledge distillation for drug-related side effect prediction. Iscience, 27(6), 2024. (中科院2区top期刊,JCR 1区, SCI影响因子:8.1)

      (11) 通讯作者. Meta-Path Semantic and Global-Local Representation Learning Enhanced Graph Convolutional Model for Disease-Related miRNA Prediction. IEEE Journal of Biomedical and Health Informatics, 2024. (SCI收录,中科院1区top期刊,影响因子: 5.772)

      (12) 通讯作者. Learning Association Characteristics by Dynamic Hypergraph and Gated Convolution Enhanced Pairwise Attributes for Prediction of Disease-Related lncRNAs. Journal of Chemical Information and Modeling, 64(8), 3569-3578, 2024. (SCI收录,JCR 1区top期刊,影响因子: 7.9)

      (13) 通讯作者. Mutually enhanced multi-view information learning for segmentation of lung tumor in CT images. Physics in Medicine & Biology, 69(7), 075008, 2024. (中科院2区期刊,JCR 1区 , SCI影响因子: )

      (14) 通讯作者. Complementary feature learning across multiple heterogeneous networks and multimodal attribute learning for predicting disease-related miRNAs. Iscience, 27(2), 2024. (中科院2区top期刊,JCR 1区, SCI影响因子:8.1)

      (15)通讯作者. Multi-scale topology and position feature learning and relationship-aware graph reasoning for prediction of drug-related microbes. Bioinformatics, 40(2), btae025, 2024. (中科院2区期刊, 计算生物学领域1区期刊, SCI影响因子: 11.622)

      2023年

      (16) 第1作者. Topological structure and global features enhanced graph reasoning model for non-small cell lung cancer segmentation from CT. Physics in Medicine and Biology, 1-14, 2023. (中科院2区top期刊,工程技术领域top期刊, SCI影响因子: 4.174)

      (17) 通讯作者. Multi-scale random walk driven adaptive graph neural network with dual-head neighboring node attention for CT segmentation. Applied Soft Computing, 1-11, 2023. (中科院2区期刊,计算机科学领域top期刊, SCI影响因子: 8.7)

      (18) 通讯作者. Specific topology and topological connection sensitivity enhanced graph learning for lncRNA-disease association prediction. Computers in Biology and Medicine, 1-10, 2023. (中科院2区期刊, 计算生物学领域1区期刊, SCI影响因子: 6.698)

      2022年

      (19) 通讯作者. Graph based multi-scale neighboring topology deep learning for kidney and tumor segmentation. Physics in Medicine & Biology, 67(22), 225018, 2022. (中科院2区期刊,JCR 1区 , SCI影响因子: 7.5)

      (20) 通讯作者. Convolutional bi-directional learning and spatial enhanced attentions for lung tumor segmentation. Computer Methods and Programs in Biomedicine, 226, 107147, 2022. (中科院2区期刊, JCR 1区, SCI影响因子: 7.4)

      (21)通讯作者. Learning global dependencies and multi-semantics within heterogeneous graph for predicting disease-related lncRNAs. Briefings in Bioinformatics, 23(5), bbac361, 2022. (中科院2区期刊, 计算生物学领域1区期刊, SCI影响因子: 11.622)

      (22) 通讯作者. Multi-type neighbors enhanced global topology and pairwise attribute learning for drug–protein interaction prediction. Briefings in bioinformatics, 23(5), bbac120, 2022. (中科院2区期刊, 计算生物学领域1区期刊, SCI影响因子: 11.622)

      (23) 通讯作者. Fully connected autoencoder and convolutional neural network with attention-based method for inferring disease-related lncRNAs. Briefings in Bioinformatics, 23(3), bbac089, 2022. (中科院2区期刊, 计算生物学领域1区期刊, SCI影响因子: 11.622)

      (24) 通讯作者. Integration of neighbor topologies based on meta-paths and node attributes for predicting drug-related diseases. International journal of molecular sciences, 23(7), 3870, 2022. (SCI收录,影响因子4.183,中科院2区top期刊)

      (25)通讯作者. Heterogeneous multi-scale neighbor topologies enhanced drug-disease association prediction. Briefings in Bioinformatics, pp. 1-9, 2022. (中科院2区期刊, 计算生物学领域1区期刊, SCI影响因子: 11.622)

      (26) 通讯作者. Multi-type neighbors enhanced global topology and pairwise attribute learning for drug-protein interaction prediction. Briefings in Bioinformatics, pp. 1-9, 2022. (中科院2区期刊, 计算生物学领域1区期刊, SCI影响因子: 11.622)

      (27) 通讯作者. Integrating specific and common topologies of heterogeneous graphs and pairwise attributes for drug-related side effect prediction. Briefings in Bioinformatics, pp. 1-9, 2022. (中科院2区期刊, 计算生物学领域1区期刊, SCI影响因子: 11.622)

      (28) 通讯作者. Integration of pairwise neighbor topologies and miRNA family and cluster attributes for miRNA-disease association prediction. Briefings in Bioinformatics, pp. 1-12, 2022. (中科院2区期刊, 计算生物学领域1区期刊, SCI影响因子: 11.622)

      (29) 通讯作者. GVDTI: graph convolutional and variational autoencoders with attribute-level attention for drug-protein interaction prediction. Briefings in Bioinformatics, pp. 1-12, 2022. (中科院2区期刊, 计算生物学领域1区期刊, SCI影响因子: 11.622)

      (30) 通讯作者. Dynamic graph convolutional autoencoder with node attribute-wise attention for kidney and tumor segmentation from CT volumes. Knowledge-based Systems, 1-16, 2022. (该杂志在人工智能领域202本期刊中排名第12,影响因子: 8.038,JCR 1区top期刊,中科院1区top期刊)

      2021年

      (31) 通讯作者. Graph triple-attention network for disease-related lncRNA prediction. IEEE Journal of Biomedical and Health Informatics, 1-11, 2021. (SCI收录,中科院1区top期刊, 影响因子: 5.772)

      (32) 通讯作者. Integrating specific and common topologies of heterogeneous graphs and pairwise attributes for drug-related side effect prediction. Briefings in Bioinformatics, pp. 1-9, 2022. (中科院2区期刊, 计算生物学领域1区期刊, SCI影响因子: 11.622)

      (33) 通讯作者. Learning multi-scale heterogeneous representations and global topology for drug-target interaction prediction. IEEE Journal of Biomedical and Health Informatics, 1-12, 2021. (SCI收录,中科院1区top期刊,影响因子: 5.772)

      (34) 通讯作者. Graph convolutional autoencoder and fully-connected autoencoder with attention mechanism based method for predicting drug-disease associations. IEEE Journal of Biomedical and Health Informatics, 1793-1804, 2021. (SCI收录,中科院1区top期刊,影响因子: 5.223)

      国际合作与交流

      我们课题组与日本东京大学(泰晤士世界大学排名第28位)的Koshizuka教授、日本千叶大学(泰晤士世界大学排名,第801到1000之间)的Nakaguchi教授、澳大利亚La Trobe大学(泰晤士世界大学排名,第251到300之间)的Cui博士,具有长期的合作和交流。对于具有科研热情和工作勤奋的同学,可以优先推荐到国外读博;对于有意在国内读博的同学,则优先推荐到吉林大学、天津大学、厦门大学等国内知名学府。

      指导学生情况

      (1) 联合指导的多数硕士研究生均荣获国家级或校级奖学金;

      (2) 部分研究生毕业分别去了百度、京东、小米、平安保险等国内知名IT公司和企业;

      (3) 部分研究生去了天津大学、南开大学、吉林大学、厦门大学、西安交通大学、中山大学、华中科技大学等国内知名学府,继续攻读博士研究生。

      下一条:玄萍

      海南大学网络空间安全学院(密码学院)
      • 院长邮箱书记邮箱  
      • 地址:海南省海口市美兰区人民大道58号 邮编:570228
      • 联系电话:0898-66259127 传真:0898-66259127 邮件地址:scscs@hainanu.edu.cn
      • 师德师风问题举报 投诉电话:0898-66257132 投诉邮箱:scscs@hainanu.edu.cn